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We demonstrate a hydrostatic pressure-induced hard-to-soft transition of an isolated single wall carbon
nanotube, using classical andab initio constant-pressure molecular-dynamics simulations and continuum elas-
tic theory analysis. At low pressure, the carbon tube is hard. Above a critical pressure, the tube becomes much
softer with a decrease of bulk modulus by two orders of magnitude. The hard-to-soft transition is caused by a
pressure-induced shape transition of the tube cross section from circular to elliptical.
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Carbon nanotubes(NTs) exhibit a wealth of fascinating
structural, mechanical, and electronic properties. As an ideal
one-dimensional structure, their properties are highly aniso-
tropic. For example, mechanically the NTs are extraordinar-
ily hard in the axial direction but soft in the radial direction;
the compressibility anisotropy in the two directions exceeds
orders of magnitude. As the NTs are virtually incompressible
in the axial direction, much attention has been paid to their
structural and mechanical behavior in the radial direction.1–8

The radial deformation(i.e., the change of cross-section
shape) of single-walled carbon nanotubes(SWNTs) in turn
influences their mechanical1–5 and electronic properties.7–9

The hardness, as one of the most important parameters
characterizing the mechanical properties of SWNTS, has
been intensively studied.10–12 However, so far, most studies
have focused only on the ground-state hardness of SWNTs at
ambient conditions. In this Paper, we investigate the me-
chanical properties, especially the hardness, of a single
SWNT under hydrostatic pressure, using constant-pressure
molecular-dynamics(MD) simulations and linear elastic
analysis. We discover a pressure-induced hard-to-soft transi-
tion at which the radial modulus of the SWNT decreases by
as much as two orders of magnitude. We show that this me-
chanical (hardness) transition is caused by a pressure-
induced structural(shape) transition of SWNT characterized
by a transformation of its cross section from a circular to
elliptical shape. The critical transition pressure decreases
with increasing tube radius.

We use a constant-pressure MD method especially suited
for simulating finite system.13 Specifically for a single NT,
the volume is calculated by numerically evaluating the tube
cross-section area enclosed by the atoms from atomic
positions.13 We use the periodic boundary condition in the
axial direction and free boundary condition in the radial di-
rections. The interaction between carbon atoms is described
by a parametrized many-body potential,14 which has been
widely used to study mechanical properties of carbon
NT.1,15,16 To confirm the results of the classical molecular
dynamics method, we have simulated single(6,6) tube byab
initio molecular dynamics method.

We have simulated SWNTs of different radii ranging from
(5,5) to (20,20) under hydrostatic pressure. All the NTs un-

dergo a pressure-induced hard-to-soft phase transition. The
hard phase at low pressure exhibits a typical bulk modulus of
100 GPa, while thesoft phase at high pressure exhibits a
bulk modulus of only,1 GPa. Figure 1 shows the pressure
and the total energy as a function of reduced volume for a
(10,10) nanotube at 300 K, where the energy at zero pressure
is set to zero. Clearly, a transition at,1.0 GPa is observed.
Below the transition, thehard phase has a radial compress-
ibility of 0.01 GPa−1. Above the transition, thesoftphase has
a radial compressibility about two orders of magnitude
larger.

The hard-to-soft transition is caused by a pressure-
induced circular-to-elliptical shape transition in the cross
section of SWNT. Figure 2 shows the evolution of the cross-
section shape, the bond length, and the bond angle with in-
creasing pressure for a(10,10) nanotube. We use the length
of the two principal axes, long axisa and short axisb, to

FIG. 1. The energy and pressure as a function of the reduced
volume for(10,10) nanotube at 300 K. The energies are relative to
the minimum energy, and the volume is normalized by the equilib-
rium volume without the external pressure. At about 1.0 GPa, the
hard phase with bulk modulus of about 100 GPa transforms into the
soft phase with bulk modulus of just a few GPa.
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characterize an elliptical shape. Below the transition pres-
sure,,1.0 GPa,a remains almost equal tob, defining a cir-
cular shape. Above,1.0 GPa,a becomes larger thanb, de-
fining an elliptical shape. The aspect ratiosa/bd of the
elliptical shape increases continuously with increasing pres-
sure. Eventually, as the long axis continues to increase and
the short axis continues to decrease, the elliptical shape un-
dergoes another transition to a dumbbell shape, as shown in
Fig. 2(a). Under even higher pressure, the dumbbell tube can
become so flat that the spacing between the opposite side
walls approaches the layer spacing in the graphite
s,3.35 Åd. Consequently, there will be an additional van der
Waals interaction between the side walls that can lead to the
collapse of the tube.17 Such an effect is more pronounced for
tubes with larger radii. Here, however, we focus on the hard-
ness transition in the pressure regime above the collapsing
and all the NTs we studied are well below the critical radius
for collapsing without pressure.17

Figure 2(b) shows that the percentage change in bond
length and bond angle increases simultaneously with increas-
ing pressure below the transition, indicating a uniform
shrinking of the circular shape under pressure. Above the
transition, the bond length remains unchanged but the change
of bond angle increases sharply with increasing pressure.
The trend of change in bond length and bond angle provides
a good explanation of the hard-to-soft transition. It costs
much more energy to change bond length than to change
bond angle. Below the transition, the structural response to
the external pressure is largely taken by the changing bond
length of a circular shape, giving rise to a hard phase; while
above the transition, the structural response to the external
pressure is largely taken by the changing bond angle of an
elliptical shape, giving rise to a soft phase.

The critical transition pressure depends strongly on the
tube radius. Figure 3 shows the simulated transition pres-

sures(solid dots) at 300 K to be 8.8, 5.3, 2.2, 1.0, 0.5, and
0.2 GPa for the(5,5), (6,6), (8,8), (10,10), (12,12), and
(20,20) nanotubes, respectively. The smaller the radius, the
higher the transition pressure.18

To confirm the pressure-induced shape and hardness tran-
sition of SWNTs which is discovered by our molecular-
dynamics simulations using classical interatomic potential,
we have also simulated the behavior of a(6,6) carbon nano-
tube under hydrostatic pressure byab initio molecular dy-
namics, using the pseudopotential plane-wave methodsEcut

=286 eVd and the generalized gradient approximation energy
functional. The similar calculation methods have been suc-
cessfully used to study the graphite systems.19–21To simulate
a “single” tube, a supercell with a large dimension
(16 Å316 Å) in the x−y plane (i.e., the plane of the tube
cross section) is used to exclude the interaction between the
tube and its periodic images. Forty-eight atoms are included
in the simulation cell, two specialk points are used in the
Brillouin zone sampling. Figure 4 shows the results of simu-
lated volume, energy, and shape(lengths of long and short
axes of ellipse) as a function of applied pressure. They are
very similar to the results of the(10,10) tube simulated by
classical potential, as shown in Figs. 1 and 2. Clearly,ab
initio simulations confirm qualitatively the pressure-induced
transition found by the classical potential. Quantitatively,
however, theab initio potential predicts a transition pressure
of ,10 GPa, which is about two times the value,5.3, pre-
dicted by classical potential. This indicates the classical po-
tential is somewhat too soft, which is known for the Tersoff-
type potential. We also note that the classical potential does
not include the van der Waals interaction between the tube
walls. However, we found that inclusion of such interaction
in the classical potential does not change the results notice-
ably. This is not surprising because the van der Waals inter-
action becomes only significant when the distance between
the tube walls is smalls,3.4 Åd, while the actual distance at

FIG. 2. (a) The length of the long and short axes, as a function
of pressure for(10,10) nanotube. The shape of the cross section at
some selected pressures is plotted at the bottom of the figure.(b)
The absolute relative change of bond length and bond angle as a
function of pressure for(10,10) nanotube, the data is obtained by
quenching the system from 300 to 0 K at constant pressure.

FIG. 3. The transition pressure(upper panel) and the elastic
modulus(lower panel) as a function of tube radius at 300 K. The
solid line is a least-squares fit to the data using Eq.(4) (upper panel)
and Eq.(6) (lower panel). The simulated data follows nicely with
the predicted behavior.
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the transition pressure for all the tubes is much larger and
remains so even for deformed tubes in most cases. Although
the classical potential predicts a lower value of individual
transition pressure, it correctly predicts the qualitative behav-
ior, including the dependence of transition pressure on tube
radius, in good agreement with continuum theory, as we dis-
cuss below.

Next, we provide a general analysis and understanding of
the above simulation results, especially the hard-to-soft tran-
sition, based on continuum linear elastic theory. Consider an
original circular nanotube of radiusR0 being transformed
into an elliptical shape, the energy per length of tube, in
reference to the energy of original tube, can be expressed
as22,23

E =
D

2
R 1

r2dl +
C

2
R 1R dl − L0

L0
2

2

dl + PA, s1d

where D=Yh3/12s1−n2d and C=Yh/ s1−n2d are constants
related to Young’s modulussYd, Poisson ratiosnd, and the
tube thicknessshd. r is the radius of local curvature.L0

=2pR0 is the perimeter of the original tube cross section.A
is the area of tube cross section. Here the first term represents
the bending strain energy and the second term represents the
compression strain energy.

For an elliptical shape with long axisa and short axisb
and introducingR=Îab, v=b/a, and e=R(f2svd−R0) /R0

the strain of the bond length. The integration of Eq.(1) gives

E = Dp
f1svdf2svd
R0s1 + ed

+ Cpe2R0s1 + ed + PpR0
2s1 + ed2

f2
2svd

,

s2d

with

f1,2svd =
1

2p
R sv cos2 t + v−1sin2 tda1,2dt, s3d

a1=−5/2 anda2=1/2.
The optimal shape under a given pressure is then deter-

mined by the energy minimization with respect to variablese
andv. Because both functionsf1svd and f2svd have a mini-
mum atv=1, it is easy to see that the first term in Eq.(2) has
a minimum atv=1, favoring an isotropic circular shape
while the third term has a maximum atv=1, favoring an
anisotropic elliptical shape. Consequently, at low pressure
when the first term dominates, the tube adopts a circular
shape with an energy minimum atv=1, and the in-plane
strain e changes with pressureP as esPd=D/2CR0

2

−PR0/C. At high pressure when the third term becomes
dominant, the tube adopts an elliptical shape with an energy
minimum at vÞ1, with both e and v changing with the
pressure as

Pse,vd =
Df2

4svd
2R0

3s1 + ed3S f18svd
f28svd

+
f1svd
f2svdD , s4d

esvd = −
Df2

2svdf18svd
2CR0

2f28svd
,

dv

de
=

CR0
2

10D f28
. s5d

The above equations clearly indicate a phase transforma-
tion at certain critical pressurePt. Above the critical pres-
sure, the cross section changes from circularsv=1d to ellip-
tical sv,1d, associated with abrupt changes of strain, cross-
sectional area. Note that the straine is very small even under
large pressure, whereas the deformation of the cross section
can be very large. The reason for such a behavior is, for
single-walled nanotubes,D /CR2=h/R!1.

It is interesting to note that such a pressure-induced nano-
tube shape instability resembles a somewhat physical phe-
nomenon occurring in epitaxial growth where stress(strain)
induces a shape instability in a two-dimensional island and
drives it to transform from an isotropic to an anisotropic
shape.24

The critical transition pressure is defined by the condi-
tions d2E/dv2uv=1=0 anddE/deuv=1=0, which give rise to

Pt =
3D

R0
3s1 + ecd3 <

3D

R0
3 , s6d

ec = −
5D

2CR
. s7d

This analytical dependence ofPt on R0 is in very good agree-
ment with the MD simulations, as shown in Fig. 3. The elas-
tic constantD (also C) may depend weakly on tube radius.
Nevertheless, treating it independent of tube radius, a least-
squares fit to the simulation data yields a value ofD
=0.76 eV, in good agreement with previous results.1,10,15The
tube first shrinks very slightly toec before the transition tak-
ing place; the larger the tube, the sooner the transition oc-
curs.

The pressure-induced shape transition in turn induces a

FIG. 4. The energy and pressure as a function of the reduced
volume for(6,6) nanotube at 300 K, obtained byab initio molecular
dynamics. The energies are relative to the minimum energy, and the
volume is normalized by the equilibrium volume without the exter-
nal pressure. The hard to soft transition can be observed at about
10.5 GP.
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hardness transition. The bulk modulus of thehard phase can
easily be calculated as

Bh =
C

2R0
. s8d

The radial modulus of thesoft phase can also be calculated,
after some algebra and numerical differentiation off1svd and
f2svd, as

Bs <
19D

2R0
3 . s9d

Below the transition, the tube remains circular and the effect
of pressure is to reduce the tube radius(bond length), and the
hard-phase modulus[Eq. (6)] is related only to constantC,
representing the compression energy. Above the transition,
the effect of pressure is to change the tube shape(bond
angle) and the soft-phase modulus[Eq. (7)] is related only to
constantD, representing the bending energy. The ratio of
bulk modulus in the soft and hard phases is

Bs

Bh
=

19

12
S h

R0
D2

. s10d

In general, the tube thickness is much smaller than the
tube radius. Consequently, the radial modulus of the soft
phase is much smaller than that of the hard phase. For ex-
ample, using a tube thickness of 0.66 Å,10 about one tenth of
the (10,10) tube radius, the ratio of the soft- to hard-phase
modulus is estimated to be,0.015 for the(10,10) tube, in
very good agreement with the MD simulation results. As the
tube thickness is independent of the tube radius, the ratio of
modulus decreases with increasing radius, i.e., the larger the
tube, the more prominent is the hardness transition.

Recently, several experiments have indicated a structural
transition in a bundle of SWNTs under hydrostatic pressure
at the range of 1.5–1.7 GPa,2–5 a circular-to-elliptical shape
transition is suggested2,3 and shown by MD simulations.4

The transition is also shown to be reversible, indicating the
structural deformation remains in the linear elastic regime.
However, the physical origin and the nature of this pressure-
induced transition remains unclear. It is interesting to specu-
late that our findings here in a single SWNT might shed
some light to the understanding of the pressure-induced tran-
sition in a bundle of SWNTs. For a bundle of tubes, the
intertube van der Waals interaction is an important additional
factor in determining the tube properties. For example, the
intertube interaction transforms the tube from a circle to a

polygon at large tube radius.1,6 The physical origin of the
polygonization transition is to increase the intertube interac-
tion energy to overcome the elastic deformation energy of
individual tube. Similarly, one might expect that the
pressure-induced circular-to-elliptical transition in a bundle
of SWNTs at high pressure is also caused by the intertube
interaction. However, based on the behavior of single SWNT
we discovered here, we suggest that the circular-to-elliptical
transition in a bundle of SWNTs at high pressure is mainly
driven by the pressure-induced intrinsic shape instability in
each individual tube to minimize the elastic energy, while the
intertube interaction plays a lesser role.

It is noteworthy that in Eq.(1) the area of the of the cross
section of the nanotube is defined aspR2. If we define the
cross-section area as 2pRh, however there is no transforma-
tion on both cross-sectional shape and the radial modulus. In
the latter case, we actually assume that the pressure inside
and outside of the nanotube is identical. This suggests that if
the hydrostatic pressure can somehow enter the carbon nano-
tube, for example, via very large defects on the tube surface
or via theopening ends of the nanotube, the cross section of
the nanotube will remain circular and the tubes will keep the
original radial modulus upon pressure. The face that cross-
sectional transformation of the nanotubes has indeed been
observed2,25 implies that in their case the external pressure or
force did not damage the nanotubes.

In conclusion, using both MD simulations and continuum
analysis, we demonstrate a pressure-induced hard-to-soft
transitions in a single SWNT upon which the modulus of the
NT decreases by as much as two orders of magnitude. We
show that this mechanical transition is caused by a pressure-
induced structural transition that not only transforms the
cross section of the tube from circular to elliptical, but also
changes the physical mechanism for mechanical response to
external pressure from changing bond length to changing
bond angle. Both simulations and analysis show that the
critical pressure decreases with increasing tube radius in a
third power law and the ratio of modulus in the hard and soft
phases scales with the square of the tube radius. Further-
more, our findings in single SWNTs may provide some hints
to the understanding of the pressure-induced transition in a
bundle of SWNTs.

The authors thank Dr. X. M. Duan for technical assis-
tance. This work is supported by the National Natural Sci-
ence Foundation of China, the special funds for major state
basic research and CAS projects. F.L. thanks the support
from US DOE, Grant No. DE-FG03-01ER45875 and from
NSFC for his visit to China.

*Corresponding author; electronic mail: xggong@fudan.edu.cn
1J. Tersoff and R. S. Ruoff, Phys. Rev. Lett.73, 676 (1994).
2S. A. Chesnokov, V. A. Nalimova, A. G. Rinzler, R. E. Smalley,

and J. E. Fischer, Phys. Rev. Lett.82, 343 (1999).
3U. D. Venkateswaran, A. M. Rao, E. Richter, M. Menon, A. Rin-

zler, R. E. Smalley, and P. C. Eklund, Phys. Rev. B59, 10 928

(1999).
4M. Peters, L. E. McNeil, J. P. Lu, and D. Kahn, Phys. Rev. B61,

5939 (2000).
5Jie Tang, Lu-Chang Qin, T. Sasaki, M. Yudasaka, A. Matsushita,

and S. Iijima, Phys. Rev. Lett.85, 1887(2000).
6M. J. Lopez, A. Rubio, J. A. Alonso, L.-C. Qin, and S. Iijima,

SUN et al. PHYSICAL REVIEW B 70, 165417(2004)

165417-4



Phys. Rev. Lett.86, 3056(2001).
7J.-C. Charlier, Ph. Lambin, and T. W. Ebbesen, Phys. Rev. B54,

R8377(1996).
8C.-J. Park, Y-H. Kim, and K. J. Chang, Phys. Rev. B60, 10 656

(1999).
9M. S. C. Mazzoni and H. Chacham, Appl. Phys. Lett.76, 1561

(2000).
10B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett.

76, 2511(1996).
11J. P. Lu, Phys. Rev. Lett.79, 1297(1997).
12E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science277, 1971

(1997).
13D. Y. Sun and X. G. Gong, J. Phys.: Condens. Matter14, L487

(2002).
14D. W. Brenner, Phys. Rev. B42, 9458 (1990); J. Tersoff, Phys.

Rev. Lett. 61, 2879(1988).
15D. H. Robertson, D. W. Brenner, and J. W. Mintmire, Phys. Rev.

B 45, 12 592(1992).
16See, for example, M. B. Nardelli, B. I. Yakobson, and J. Bern-

holc, Phys. Rev. Lett.81, 4656 (1998); B. I. Yakobson, C. J.
Brabec, and J. Bernholc,ibid. 76, 2511 (1996); Yueyuan Xia,

Yuchen Ma, Yuelin Xiang, Yuguang Mu, Chunyu Tan, and Li-
angmo Mei, Phys. Rev. B61, 11 088(2000).

17N. G. Chopra, L. X. Benedict, V. H. Crespi, M. L. Cohen, S. G.
Louie, and A. Zettl, Nature(London) 377, 135 (1995).

18L. F. Sun, S. S. Xie, W. Liu, W. Y. Zhou, Z. Q. Liu, D. S. Tang,
G. Wang, and L. X. Qian, Nature(London) 403, 384 (2000).

19A. Incze, A. Pasturel, and P. Peyla, Phys. Rev. B66, 172101
(2002).

20P. C. Sanfelix, S. Holloway, K. W. Kolasinski, and G. R. Darling,
Surf. Sci. 532, 166 (2003).

21S. P. Chan, W. L. Yim, X. G. Gong, and Z. F. Liu, Phys. Rev. B
68, 075404(2003).

22L. D. Landau and E. M. Lifshitz,Elasticity Theory(Pergamon,
Oxford, 1996).

23S. Timoshenko and J. Gore,Theory of Elastic Statility(McGraw-
Hill, New York, 1988).

24A. Li, Feng Liu, and M. G. Lagally, Phys. Rev. Lett.85, 1922
(2000).

25T. Hertel, R. E. Walkup, and P. Avouris, Phys. Rev. B58, 13 870
(1998).

PRESSURE-INDUCED HARD-TO-SOFT TRANSITION OF… PHYSICAL REVIEW B 70, 165417(2004)

165417-5


